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Many theories of human cognition postulate that people are equipped with a repertoire of strategies to
solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account
of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to
rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can
the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox
model be formally tested against alternative theories? The authors show how these challenges can be met
by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of
empirical data across a variety of domains (i.e., judgment and decision making, children’s cognitive
development, function learning, and perceptual categorization), the authors illustrate how Bayesian
inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained,
and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their
approach applies at the individual level but can also be generalized to the group level with hierarchical
Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and method-

ological advancement for toolbox theories of cognition and behavior.
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In line with the classic proverb that many roads lead to Rome,
people may use various strategies or cognitive tools to deal with
the challenges they face in daily life. The idea that there is usually
more than one strategy to reach a single goal was described by the
late psychologist Egon Brunswik as vicarious functioning, mean-
ing that “there is a variety of ‘means’ to each end” (Brunswik,
1952, p. 18). The notion that people can choose among different
strategies within a cognitive toolbox allows one to explore why
different people may approach the same task in different ways and
provides a fruitful basis for understanding variations in behavior
across time and situations (Einhorn, 1970).

Toolbox Models Are Widely Used

The concept of a cognitive toolbox can be traced across
various theories in psychology and related fields. For instance,
in linguistics, it has been argued that people use different
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strategies for recognizing words based on semantic context
(Eisenberg & Becker, 1982). Developmental psychologists have
found that children use multiple strategies when solving math-
ematical exercises, balance-scale problems, or memory tasks
(Coyle, Read, Gaultney, & Bjorklund, 1998; Lemaire & Siegler,
1995). In the social domains, researchers have argued that
people rely on different strategies for social interactions (Erev
& Roth, 2001; Fiske, 1992; Milinski & Wedekind, 1998),
mating choices (Buss & Schmitt, 1993), and predicting other
people’s behavior (Costa-Gomes & Crawford, 2006). Further-
more, researchers have argued that people use different strate-
gies for categorization (Busemeyer & Myung, 1992; Patalano,
Smith, Jonides, & Koeppe, 2001; Sewell & Lewandowsky,
2011), resource allocation (Ball, Langholtz, Auble, & Sopchak,
1998), estimation and frequency judgments (Brown, 1995;
Brown, Cui, & Gordon, 2002; von Helversen & Rieskamp,
2008), skill acquisition (Anderson & Lebiere, 1998; Lovett,
1988), function learning (Lewandowsky, Kalish, & Ngang,
2002), and learning processes (Erev & Barron, 2005; Gigeren-
zer & Gaissmaier, 2011). The idea that processes such as
information search or choice are guided by qualitatively differ-
ent strategies also figures prominently in research on judgment
and decision making. For example, Payne, Bettman, and John-
son (1988) argued that “a decision maker possesses a repertoire
of well-defined strategies and selects among them when faced
with a decision” (p. 550; see also Payne, Bettman, & Johnson,
1993). Likewise, the heuristics-and-biases program (Kahneman,
Slovic, & Tversky, 1982; Tversky & Kahneman, 1981) follows
the assumption that people are equipped with a set of heuristics
or simple rules of thumb.
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Alternative Models of Cognition

In contrast to the toolbox approach, theory building in psychol-
ogy may also follow the idea of a single comprehensive model to
describe human cognition. This single-model approach does not
assume qualitatively different cognitive processes or changes in
strategies. Instead, behavioral variations and individual differences
within a given task are captured through free parameters, thus
retaining the basic notion of a single model that can be broadly
applied. Examples of such models are plentiful. In the realm of
judgment and decision making, alternatives to toolbox models
include sequential sampling models (Busemeyer & Townsend,
1993; Lee & Cummins, 2004; Newell, 2005; Newell & Lee, 2011;
Roe, Busemeyer, & Townsend, 2001; Usher & McClelland, 2001,
2004), exemplar models (Juslin & Persson, 2002; Nosofsky,
1991), and neural network models (Glockner, Betsch, & Schindler,
2010; Gluck & Bower, 1988), to name only a few.

Difficulties When Testing Toolbox Models

The idea of strategy toolboxes has had its share of criticism. An
important point of contention is that toolbox models as a whole are
difficult to falsify and it is not always clear how they can be tested
against alternative models of cognition (e.g., Broder, 2000;
Dougherty, Franco-Watkins, & Thomas, 2008; Hilbig, 2010; New-
ell, 2005; Todd & Gigerenzer, 2001).

One of the reasons for this difficulty with falsification is that a
criterion is needed to decide on the number of strategies that
belong to a particular toolbox. Including more strategies increases
the toolbox’s flexibility and consequently yields a better fit to the
data. This may create a loophole for researchers who wish to
immunize their toolbox model against falsification because one
can always add another tool to capture the observed behavior. This
problem was also noted by Glockner et al. (2010), who criticized
toolbox models for being flexible storage devices that provide
unlimited space for additional strategies. In general, the more
strategies are included, the higher the risk that one of the strategies
provides a good description of the observed data merely by chance,
so that the improved fit stems from fitting random noise (Domin-
gos, 1999; Myung, 2000). Thus, even if each single strategy in the
toolbox is rather simple, including many such strategies still results
in a highly complex and flexible model that is difficult to test and
falsify empirically—this is the strategy sprawl problem. In the
extreme case, a sprawl of simple toolbox strategies always pro-
vides a superior description of the data by assuming a specific
strategy for each person and situation. In contrast, an increase in
complexity is worthwhile if it leads to new insights. Therefore,
restricting the repertoire a priori to only a few strategies would
defeat the whole purpose of describing intra- and interindividual
differences through qualitatively different processes.

To formalize and guide this balancing act, a methodological
procedure is needed that can quantify the trade-off between a
toolbox’s flexibility and its descriptive adequacy (Pitt & Myung,
2002). Here, we show how the Bayesian formalism allows toolbox
approaches to be rigorously tested. This rigorous evaluation pro-
cedure is crucial to overcome the strategy sprawl problem and
thereby advance the toolbox approach as a testable competitor to
alternative accounts of cognition. In the following, we lay out this
Bayesian approach and illustrate its advantages by means of con-
crete applications in four different research domains.

The remainder of this article is structured as follows: In Part I,
we outline and specify the theoretical basis of a Bayesian toolbox
approach. Using simulated data and model recovery studies, we
further illustrate how this approach can be fruitfully applied to
individual-level data that resemble the general structure of many
empirical studies conducted to test toolbox models. In Part II, we
apply the framework to various empirical data from four research
domains: judgment and decision making, children’s cognitive de-
velopment, function learning, and perceptual categorization. In
these seemingly unrelated areas, we compare toolboxes (i.e., mix-
tures of strategies) against single strategies and alternative cogni-
tive models on the individual level. Following this, we provide an
example of how to tackle the problem of strategy sprawl based on
an enlarged toolbox. Finally, in Part III, we extend the approach to
the group level by applying hierarchical Bayesian techniques that
coalesce data from multiple individuals. Here, we start again from
simulations before progressing to the analysis of empirical data.

Part I: A Bayesian Approach to Testing Toolboxes

Preventing strategy sprawl when testing and comparing a tool-
box requires a trade-off between the increased complexity intro-
duced through additional strategies and the expected increase in
explanatory power for the observed data. Here, the Bayesian
method provides a unifying comparison metric known as the
Bayes factor (BF; Jeffreys, 1961; Kass & Raftery, 1995) that
quantifies the extent to which the data support one model over
another, taking model complexity into account. Its interpretation
has intuitive appeal as it indicates how much one should shift one’s
beliefs in each model based on the observed data. For example,
when comparing any two models M, and M, (i.e., a toolbox and
a single-strategy model), a BF, , of 10 indicates that the observed
data are 10 times more likely to have occurred under M, than
under M,.

The BF can be obtained by comparing the marginal likelihoods
of each of the models under consideration. Conceptually, the
marginal likelihood measures the average quality of the predic-
tions that a model M, has made for the observed data D. The better
the predictions, the greater the evidence in favor of M,. To deter-
mine how well a model predicted the observed data, we need to
take into account a/l/ predictions that the model made and weight
these by their prior probability. Statistically, this is accomplished
by averaging the likelihood of the observed data D across all
possible parameter values 6, of a model M,, weighted by the prior
probability of 6, (e.g., Myung & Pitt, 1997; Wagenmakers,
Lodewyckx, Kuriyal, & Grasman, 2010):

pDIMY = [ p(D16.M) Xp(O, 1M db,. (1)

where p(6, | M,) represents the prior probability distribution of 6,,
and p(D | 8,, M,) is a likelihood function that represents the
probability of the observed data D given 6,.

The foregoing argument also shows that to obtain strong support
from the data, a model needs to make a high proportion of good
predictions. This is precisely the problem with models that are
overly complex; such models have a relatively large parameter
space, and although this enables them to make many predictions,
a high proportion of these predictions will turn out to be false.
Complex models need to distribute the prior probability across
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their entire parameter space, and ultimately, a model that predicts
almost everything has its prior probability spread so thin that the
occurrence of any particular event will not greatly add to that
model’s credibility. This is the Bayesian justification for the adage
“a model that predicts everything predicts nothing.”

As described above, the marginal likelihood for a model M, is
calculated by averaging the likelihood p(D | 8, M,) over the prior
p(0, | M,). When the prior is very spread out, it occupies a
relatively large part of the parameter space in which the likelihood
is almost zero (i.e., where the predictions are false), and this
greatly decreases the average or marginal likelihood. Hence, the
computation of marginal likelihood embodies a reward for parsi-
mony, or an automatic Occam’s razor (cf. Jefferys & Berger, 1992;
Myung & Pitt, 1997).

It is well known that there is more to model complexity than the
size of the parameter space. For instance, another important factor
that influences model complexity is the functional form of the
model parameters. Consider, for instance, two laws of psychophys-
ics that relate the objective intensity / of a stimulus (e.g., a sound,
a flash of light) to its subjective experience W(I). The first, Fech-
ner’s law, states that W(I) = k X In(/) + B: Experienced intensity
is a negatively accelerating function of stimulus intensity. The
second, Stevens’s law, states that W(I) = k X [P Experienced
intensity can be a negatively or positively accelerating function of
stimulus intensity. Fechner’s law and Stevens’s law each have two
parameters, k and [3, but nonetheless, Stevens’s law is more com-
plex: It can capture more data patterns and is therefore more
difficult to falsify than Fechner’s law (cf. Myung & Pitt, 1997;
Townsend, 1975).

In sum, a model is complex when it makes many predictions.
This occurs when a model has many free parameters, when the
prior distributions of those parameters are relatively broad, or
when the parameters have a complicated functional form. Such
complexity may or may not be warranted by the data. By assessing
the average quality of a model’s predictions, the marginal likeli-
hood takes all of these considerations automatically into account.

Dividing the marginal likelihoods for models M, and M, yields
BF, ,:

- p(D | M)

=— 2
pD 1 M) @

12
Hence, the BF compares the predictive performance of one model
to that of another, for the data at hand. Here, BF, , indicates the
extent to which the data support M, over M,, and as such, it
represents “the standard Bayesian solution to the hypothesis test-
ing and model selection problems” (Lewis & Raftery, 1997, p.
648). To obtain the marginal likelihood in Equation 1, the prior
distribution of the models’ parameter and likelihood functions
must be specified. With respect to testing and comparing toolbox
models of different sizes, this requires specifying the strategies and
how decision makers select among them, illustrated next.

Formal Specification of a Cognitive Toolbox

In general, a toolbox model TB can be conceptualized as a set
of different psychological processes or strategies f and the different
parameters 0, that may be associated with each of them. Each
strategy f predicts a specific behavior contingent on these param-
eters depending on internal and external influences.

Example of a toolbox. The details of each strategy vary
greatly across different research areas. In the categorization do-
main, for example, researchers may be interested in which strate-
gies people use to categorize objects contingent on the objects’
features. In decision making, people’s strategies for making prob-
abilistic inferences are often examined. Here, a common experi-
mental task is to infer which of two options has a higher criterion
value (e.g., Gigerenzer & Goldstein, 1996). Imagine a person who
predicts which of two used cars will last longer by using cues that
are probabilistically related to the criterion, such as the cars’
mileage, the sound of the engines, or the accident histories. This
person could apply a simple noncompensatory decision strategy,
such as take the best (TTB), that focuses on only the most impor-
tant or valid cue (Gigerenzer & Goldstein, 1996). If that cue does
not discriminate, the second-most-important cue is considered, and
so on until a decision can be made. Alternatively, this person could
use a compensatory weighted-additive (WADD) strategy (e.g.,
Payne et al., 1988, 1993) that computes an overall score for each
option by summing up its cue values multiplied by their respective
importance weights or validities. The decision maker selects the
option with the highest score. Because the compensatory strategy
WADD takes all available information into account, it is com-
monly assumed to be cognitively more demanding than TTB
(Czerlinski, Gigerenzer, & Goldstein, 1999; Payne et al., 1993).
Yet another alternative is to make use of both strategies. In this
case, no one strategy will always be best for predicting a person’s
choices. Instead, a decision maker’s behavior will be better de-
scribed by a toolbox consisting of both strategies.

Strategy selection. If a toolbox consists of more than one
strategy, the question of how tools are selected from the toolbox
must be addressed. This is an area of active research, as the
cognitive processes that determine this selection might depend on
various factors (Lee, 2011; Payne et al., 1988, 1993), such as
environmental and situational influences (e.g., Marewski &
Schooler, 2011; Newell, 2005), specific context cues (Le-
wandowsky et al., 2002), previous learning experience (e.g.,
Rieskamp, 2006; Rieskamp & Otto, 2006), or a person’s cognitive
abilities (e.g., Mata, von Helversen, & Rieskamp, 2011) or cogni-
tive development (Siegler, 1994).

To develop an ecological theory of strategy selection, scholars
have explored in which environments particular strategies work
well and to what extent individuals can adaptively choose partic-
ular strategies depending on the requirements of the situation they
face (Kruglanski & Gigerenzer, 2011; Marewski & Schooler,
2011; Simon, 1990; Todd, Gigerenzer, & the ABC Research
Group, 2012). In the car-decision example outlined above, for
instance, people might select TTB under high time pressure and
WADD when time is not an issue (e.g., Rieskamp & Hoffrage,
2008).

On a general level, the outcome of this selection process can be
expressed as a mixture proportion parameter [3 that indicates the
probability of choosing each strategy in the toolbox. For a toolbox
TB consisting of J strategies, each strategy f; will be selected with
a probability 3;, and because one strategy must be used, the Bs
must sum to 1 (2'1{21 B; = 1). Given this specification, the like-
lihood function for a toolbox can be specified based on the sum of
the likelihoods of each included f;, weighted by {3;:

pD 1 TB) = X7 [B; X p(D | f]. ©)
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If the cognitive process underlying the selection of strategies is not
specified, the specific strategy mix requires empirical validation, and
the value of {3 is estimated from the data. In this case, for a toolbox
consisting of J strategies, a total of / — 1 3 parameters are estimated
beyond the free parameters of each single strategy. However, note that
the B parameters are not independent of each other, as a high value for
one implies a low parameter value for the others.

Priors. Implementing a toolbox within a Bayesian framework
further requires specifying prior probabilities or probability distribu-
tions for all free parameters. These priors form an integral part of the
model, and they are informed by theoretical considerations and pos-
sibly also by available prior knowledge. Selecting appropriate prior
distributions is of ongoing concern to Bayesian statisticians (e.g., Kass
& Wasserman, 1995; Liang, Paulo, Molina, Clyde, & Berger, 2008).
In some cases, for example, if the parameter space is bounded, the
absence of prior knowledge can be expressed though uniform distri-
butions, indicating that all values within the predefined range are
equally likely a priori.

Simulating Individual Data

In many research areas associated with the idea of cognitive tool-
boxes, experiments rely on repeated choices between two options or
actions. In decision making, for example, people often have to decide
between two consumer products, cities, or job candidates. Similarly,
in categorization, people often have to classify objects into two
potential categories. In the developmental literature, experimenters
have asked children to predict whether a balance scale will tip either
left or right. In all these domains, people can apply different strategies
that vary in the way information is processed and in what actions are
finally taken. In the examples above, these actions are commonly
repeated choices between two options, categories, or functions. Com-
paring these choices to the predictions of a set of predefined rules or
strategies provides the basis to decide which strategy best describes
the observed data. To enhance discrimination between the candidate
strategies, stimuli are commonly designed so that the strategies’
predictions differ. Following this general layout, we simulated data
where participants repeatedly chose among pairs of options that were
carefully designed to discriminate between two generic strategies,
labeled A and B. In the car example above, for instance, A and B
would represent the noncompensatory strategy TTB and the compen-
satory strategy WADD, respectively.

Likelihood function. Individuals sometimes make implemen-
tation errors when using a particular strategy. For example, a child
solving a physical problem may use Rule A but may sometimes make
an error when using that rule. In this case, an answer that is not
predicted by Rule A would be given because of that erroneous
application and not the application of an alternative strategy.

To allow for the possibility of inconsistent choices or application
errors, each strategy in the simulation contains an explicit error term,
such that parameter € indicates the probability that a decision is made
at random. The probability that an error occurs is assumed to be
constant across situations. This simple error theory is sometimes
called tremble error (cf. Loomes, Moffat, & Sugden, 2002). Hence,
each strategy makes a probabilistic prediction contingent on an un-
known parameter value € that has to be estimated from the data. In the
simulation at hand, € = 0 indicates that no inconsistencies exist and
all decisions are in line with the strategy’s deterministic prediction.
An € = 1 implies random choice or pure guessing, such that the

probability that a pairwise choice is in line with the deterministic
prediction is .50. If a single choice matches a strategy’s deterministic
prediction, then the predicted probability of that choice equals 1 —
&72; the probability equals &2.

For instance, in the car example above, TTB might predict the
choice of one car (labeled X) and WADD the other (labeled Y). If a
decision maker applies a TTB strategy with error probability € = .2,
the probability of observing the choice of X should be 0.9, and the
probability of observing the choice of Y should be 0.1. In general, the
likelihood of observing data (D) in line with a choice of X can be
expressed as a Bernoulli distribution:

k N—k
p(DIA gy) = (1 - %) X (Z—A) , 4

where k indicates the number of choices that are consistent with the
deterministic prediction made by Strategy A and N represents the total
number of choices.

Based on this implementation of a single strategy, a toolbox TB 4
consisting of two strategies A, and B, can be set up similar to
Equation 3 where 3 indicates the probability of applying A, over B;
B = 1 indicates that an individual will always apply A,, whereas 3 =
0.8, for example, indicates A, is selected in 80% of the cases and B,
otherwise. For simplicity, we assume a common implementation error
for all strategies in the toolbox. Specified this way, in the simulation
at hand, the parameter space of TB 4 g consists of €5 and (3. In other
contexts and if alternative strategies are considered, different param-
eter sets may determine the models’ predictions.

Priors. To retain the general scope of the simulation, we
assume that there is no strong prior knowledge such that all
possible parameter values are equally likely a priori (i.e., uni-
form prior probability distributions are assigned to all param-
eters). As the parameters correspond to rates or probabilities,
this appears to be a reasonable choice. If theoretical reasons or
prior knowledge suggest further restrictions or skewed distri-
butions, alternative specifications may be justified. We consider
more complicated scenarios when analyzing empirical data sets
later.

Data. In a first step, we generated a set of stimuli that allows one
to distinguish between two strategies A, and B,. In particular, stimuli
are generated such that the error-free predictions (i.e., € = 0) of both
strategies are independent. In other words, knowing that A, predicts a
specific answer does not change the probability that B, also predicts
that answer, and vice versa. Furthermore, care was taken to ensure
that an erroneous application of any one of the strategies does not
increase the probability that the other strategy is selected.' Note that
the Bayesian method does not require uncorrelated model predictions
or independent error terms, as we outline when analyzing actual
empirical data later on. Controlling for these dependencies in the
simulation merely served as a means to reduce uninteresting noise and
to carve out the dependencies between the BF and the model param-
eters, which were of primary interest.

We generated a total of 80 stimuli as a basis for the simulation
study; this number is in the ballpark of many experiments in psychol-
ogy, and at the same time, it allowed us to generate many combina-

! The online supplemental materials provide the programming code used
to generate the data and the code used for the simulation and the subse-
quent analyses.
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tions that satisfied the specified requirements. The generated stimuli
provided the basis for comparing a toolbox TB,  against a single
strategy (either A, or B,) for single synthetic individuals with known
strategy use and implementation error.

Simulated data. We varied the mixture proportion 3 from O
(exclusive use of just A) to 1 (exclusive use of just B,) in steps of
0.05 between the simulated participants. Values between 0 and 1
resembled the genuine use of a toolbox; that is, for B = 0.5, a
simulated participant probabilistically used A, half the time and B,
otherwise. As a second factor, the application error € was set to 0
(deterministic choice), 1 (random choice), or 0.5. An error of 0.5
indicated a medium amount of error such that for 50% of the time a
strategy is used, the overlap between its error-free prediction and the
observed choice is at chance level.

Predictions. The specified simulation resembled the design of
many experiments that aim to compare two probabilistic models with
predictions contingent on the available options and a set of unknown
parameters varying between participants. As a feasible way to solve
the problem of strategy sprawl and to test and compare toolbox
models, the Bayesian technique should recover the data-generating
process so that it has a higher posterior probability than the alternative
models. For example, if an individual always uses a strategy A, the
evidence for that model should be higher than that of a more elaborate
toolbox TB, g, even though the latter contains A as a special case. If
so, the Bayesian method allows deciding how many strategies to
include in a toolbox, thereby preventing strategy sprawl.

Estimation using BUGS. For the model specification at hand,
it is not obvious how the marginal likelihood in Equation 1 could be
derived analytically. Fortunately, the BF can be estimated using
numerical integration techniques such as the Markov chain Monte
Carlo method (MCMC; e.g., Gamerman & Lopes, 2006; Gilks, Rich-
ardson, & Spiegelhalter, 1996). These methods are readily available in
the various software packages, such as WinBUGS or JAGS, that
utilize the BUGS (Bayesian analysis using Gibbs sampling) program-
ming language (Lunn, Spiegelhalter, Thomas, & Best, 2009; Lunn,
Thomas, Best, & Spiegelhalter, 2000). Using WinBUGS, the BF of a
single model A, over a toolbox TB, 5 was estimated by means of the
transdimensional product space method that contains the competing
models as well as a binary model indicator (Carlin & Chib, 1995; Han
& Carlin, 2001). We drew 100,000 representative samples from the
(joint) posterior distributions, split into four independent sampling
chains with an initial burn-in of 6,000 steps. Estimation efficiency was
facilitated through the use of pseudopriors (Carlin & Chib, 1995;
Kruschke, 2011). For all reported parameters, convergence to station-
ary sample distributions was confirmed. Similar estimation and in-
spection procedures based on BUGS also apply to the other analyses
outlined below.

Graphical model representation. Figure 1 provides a repre-
sentation of the model comparison procedure in graphical model
notation (see Koller, Friedman, Getoor, & Taskar, 2007; Lee &
Wagenmakers, 2010; Shiffrin, Lee, Kim, & Wagenmakers, 2008,
for details of this notation). In this notation, nodes correspond to
variables, edges capture dependencies between variables, and en-
compassing plates are used to denote independent replications of
model structures to indicate repeated choices or multiple decision
makers. Observed data are displayed in shaded nodes, unobserved
parameters (estimated from data) are displayed in unshaded nodes,
continuous variables are indicated by round nodes and discrete

variables by square nodes, borders of stochastic variables have a
single line, and borders of deterministic variables have two lines.

In Figure 1, the dark square nodes labeled A; and B, depict the
deterministic predictions of the two probabilistic strategies A, and
B, for each choice i out of N pairwise choices. The round nodes €,
and &, indicate the application errors for A. and TB, g, respec-
tively, and the round 3 node indicates the mixture proportion of
probabilistic strategy A, over probabilistic strategy B, within the
toolbox. The model indicator variable z determines whether the
probabilistic predictions of A, (depicted m,) or TB,  (depicted
) determine the observed choice data c. For comparing B, and
TB, g, the model looks similar except that the deterministic pre-
dictions of B, and A, were swapped.

Results. The upper panel of Figure 2 shows the probability of
each of the three models under consideration across different
combinations of parameter values. The lower panel shows the
same data expressed as the BF of A, and B, over TB, . The left
column in Figure 2 shows that a synthetic participant who made 80
pairwise choices by applying only A, with no application error
(i.e., B = 1, € = 0) yields a BF of 40 in favor of A_ over TB, g,
which translates into a relative probability of 40/(40 + 1) = .98.
Thus, the observed data increased the odds of the simple A, model
over the more complex toolbox model by a factor of 40, which
depicts the upper limit of the evidence that can be obtained in favor
of A, for the simulated data at hand. In sum, when assuming equal
prior probabilities of the two models, the results correctly point to
model A, as the data-generating model.

For a hypothetical participant who was confronted with the
same stimuli set but used A, for 64 of the 80 choices and B,
otherwise (i.e., B = 0.8, € = 0), the BF was 19 in favor of TB 4 g,
which translates into a relative probability of .95. Thus, the Bayes-
ian estimation revealed that the participant who used a mix of A,
and B, was better described by the toolbox model than by the
single A, model even if the majority of the choices were in line
with a single strategy. If a participant used A, for half of the
choices (i.e., B = 0.50), the BF in favor of the toolbox exceeded
10°, and if A, was used for fewer than 28 choices (B = 0.35), the
BF eventually exceeded 10°, the limit of our estimation routine.
These results indicate that the BF clearly points to the toolbox as
soon as some mixing of strategies with no implementation error
occurs.

Once an application error was introduced in the choice simulation,
the general pattern remained the same, but it became more difficult to
recover the data-generating model. For example, as indicated by the
middle column of Figure 2, if a participant always selected A, to
make a choice (i.e., 3 = 1) but often made an application error (i.e.,
€ = 0.5), the BF in favor of A, over the toolbox dropped from the
initial 40 (for € = 0) to 4. If A, was used for half of the choices (i.e.,
B = 0.5, € = 0.5), the BF in favor of the toolbox dropped to 8. To
some extent, this decrease can be compensated for by increasing the
number of observations. For example, when doubling the number of
simulated choices to 160, the previous parameter combination of =
0.5 and € = 0.5 yield a BF of 84 in favor of the toolbox model. For
purely random choices (i.e., € = 1, left column in Figure 2), the
models could no longer be differentiated.

Posterior predictive check: How well did the models de-
scribe the data? The BF indicates which of two models provides
a better account of the data in relative terms, but it is mute on the
absolute quality of model fit. A model with a large BF could still
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Figure 1.

Graphical representation of the model comparison between a toolbox model TB, i and a single

model A,. The dark square nodes A; and B; depict the deterministic predictions of two strategies A and B for each
choice i out of N choices. The €s (round nodes) indicate the application errors, and the round 3 node indicates
the mixture proportion of A, over B, in the toolbox. The model indicator variable z determines whether the
probabilistic prediction of A, (depicted m,) or the probabilistic predictions of TB, p (depicted ) determine

the observed choice data c.

provide a terrible fit to the observed data. To test whether the models
actually predict the observed data, one can conduct a posterior pre-
dictive check by drawing representative samples from the joint pos-
terior distribution of the respective model parameters and using these
samples to generate new data (Kruschke, 2012). A count of how often
the resulting model predictions match the observed data provides a
rough measure of model fit (Gelman, Meng, & Stern, 1996; Meng,
1994). For the simulated data at hand, Figure 3 shows that when
choices were simulated as a mix of A, and B, simulated sets of data,
the toolbox yielded more accurate predictions for most of the param-
eter combinations used when simulating the choice data. The single
A, and B, models were only marginally superior if almost all choices
were made in line with either just A, or just B,. This seems plausible,
as the toolbox was the more flexible model. Figure 3 further confirms
that the prediction accuracy of all models increased as the application
error € decreased.

Discussion. The results of the model recovery study show that a
participant who consistently used a single strategy was clearly better
described by this single strategy than a more complex toolbox with
two strategies. Once a participant started to systematically use a
second strategy for at least some of the choices, the relative proba-
bility of a more complex toolbox that entailed both strategies quickly
increased. In the context at hand, relatively few choices consistent
with the second strategy were sufficient to provide strong support in

favor of the more complex toolbox model. In contrast, even when all
choices were in line with the single model, the BF did not exceed 40.
This asymmetry is plausible as it reflects the fact that the single model
can be falsified more easily than the toolbox model that includes the
single model as a special case. When the strategies were applied with
some degree of error, it became more difficult to identify the data-
generating model, but the general pattern remained the same.

Part II: Applying the Toolbox Framework to
Empirical Data

The idea of a cognitive toolbox readily applies to various
areas of research in psychology and can be tested across seem-
ingly different sets of empirical data. For this test, the same
theoretical framework and the same Bayesian techniques out-
lined above can be successfully applied. In the following, we
showcase this in four different research areas: judgment and
decision making, children’s cognitive development, function
learning, and perceptual categorization. In these four domains,
we compare toolbox models that differ in size and complexity
on the level of a single individual. Finally, we show how the
same theoretical and methodological principles can be used to
test toolboxes against qualitatively different cognitive models,
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TB, s depending on the level of noise (€, across panels) and the proportion of choices according to A, relative
to B, (B, on the x-axis). Results are based on independent simulations of 80 pairwise choices each. The upper
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and we provide a concrete example of how to avoid unwanted
strategy sprawl.

Judgment and Decision Making

Directly following up on the first simulation study, we now
apply the Bayesian toolbox framework to the domain of judgment

and decision making. Here, as described above, researchers have
often compared simple noncompensatory decision strategies, such
as TTB, to more complex strategies, such as WADD. Moreover,
researchers might argue that people could use both strategies
depending on the decision situation to make their inferences (cf.
Rieskamp & Otto, 2006).
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Figure 3. Mean proportion of correct predictions based on posterior estimates of single-strategy models A, and
B, and toolbox model TB, j for different 3 and € parameter values used in the simulation. A mean proportion
of .5 indicates chance level; 1 indicates that all pairwise choices are correctly predicted. For most parameter
combinations, the toolbox achieves a higher proportion of correct predictions than the respective single models.
3 = proportion of choices according to Ag; € = level of noise.
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Data. To explore the use of WADD and TTB, participants in
a choice experiment by Rieskamp and Otto (2006) repeatedly
chose between options presented as 168 pairs described on six
binary (+/—) cues. The cues’ importance weights were given, so
that the deterministic predictions of TTB and WADD could be
determined for each option pair. After each decision, participants
received feedback on whether they had successfully chosen the
superior option as defined by the experimenters. This feedback
differed between two experimental conditions. Participants in the
compensatory condition (N = 20) received feedback that rein-
forced WADD, whereas participants in the noncompensatory con-
dition (N = 20) received feedback that reinforced TTB.

If participants in the noncompensatory condition learned to use
the reinforced strategy exclusively, then a simple TTB, model
should be better than a toolbox TB-15 wapp that contains TTB, as
one of its tools in predicting participants’ inferences. Likewise, if
the feedback in the compensatory condition led participants to
adopt WADD, WADD, should predict their choices better than
TBrp.wapp- As an alternative prediction, decision makers may
have continued to use TByrg wapp and the feedback just influ-
enced the probabilities of selecting TTB, and WADD, (i.e., the 3
parameter) from the toolbox. In contrast to the previous simulation
study, the experiment was designed so that the strategies’ predic-
tions would not be completely independent and adopting either
strategy would result in above-chance performance. These design
characteristics make it harder to identify the data-generating strat-
egy.

Method. To test these predictions, we examined the last two
blocks in the experiment (48 choices) because analyses by
Rieskamp and Otto (2006) indicated that participants’ choices did
not change much after the first five blocks. We used the same
Bayesian estimation techniques as in the previous model recovery
simulation to estimate the probabilities of both single-strategy
models over the more complex toolbox separately for each partic-
ipant. In particular, we replaced the single strategies A and B in the
simulation with TTB, and WADD,, as defined by the original
researchers, and used similar priors for the respective model pa-
rameters as in the simulation: The prior probability of 3 was set to
a uniform distribution ranging from 0 (always choose according to
WADD,) to 1 (always choose according to TTB,); likewise, prior
on € was set to a uniform distribution ranging from O (deterministic
choice) to 1 (random choice). Following this, the estimation pro-
cedure was implemented based on the same BUGS script used in
the simulation study.

Results. For a hypothetical participant who always uses the
reinforced strategy without an application error, the BF for the
single-strategy model over the toolbox would be 25 (i.e., a prob-
ability of .96). This depicts the upper limit of the evidence for the
experiment at hand.

The results show that in the noncompensatory condition, where
participants were reinforced to use TTB, the estimated posterior
probability of TTB, over TBy spp v Tanged from .96 (BF = 25
in favor of TTBy) to virtually O between individual participants.
Figure 4 (upper left) shows that for 16 of the 20 participants, the
BF of TTB, over TB-p5 wapp Was smaller than 1, indicating that
for most participants the last 48 choices were better described by
TBrrp.wapp than by TTB,. Figure 4 (upper right) further shows
that the BF of WADD, over TB15 wapp Was smaller than 1 for
19 of the 20 participants, indicating that WADD, did not provide

a good description of participants’ choices in the noncompensatory
condition. This is plausible, as participants were not incentivized
to use WADD in this condition.

In the compensatory condition, the BF of the reinforced
WADD, over TB g wapp ranged from 25 in favor of WADD, to
776 in favor of TBrg wapp between participants. Figure 4 (lower
right) shows that for 14 of the 20 participants, the BF of WADD,
over TByyp wapp Was larger than 1, indicating that the last 48
choices of those individuals were better described by a single
WADD, model than by TBrg wapp- Furthermore, TTB, did not
provide a good description for any of the 20 participants (see
Figure 4, lower left). This suggests that participants had fewer
difficulties applying WADD in the compensatory condition than
applying TTB in the noncompensatory condition or that they had
a preference for using WADD from the beginning, so that less
reinforcement was required for using WADD,.

Discussion. The results demonstrate the successful applica-
tion of the Bayesian method to empirical choice data. In particular,
assuming equal model probabilities a priori, the method quantifies
the probability of the more complex toolbox model over the single
strategies for each individual participant. Contrary to Rieskamp
and Otto’s (2006) findings, these results show that the evidence for
a toolbox model differed substantially between the two experimen-
tal conditions, with relatively strong support in the noncompensa-
tory condition and relatively weak support in the compensatory
condition. This differentiated conclusion relies on quantified pos-
terior model probabilities that Rieskamp and Otto did not derive.

Children’s Cognitive Development

The concept of cognitive toolboxes is also common in the
developmental literature. Here, children’s cognitive advancement
is often characterized as an invariant sequence of increasingly
complex rules or strategies (Flavell, 1982; Piaget, 1952). Thus, an
important research question is which and how many strategies are
required to describe children’s reasoning within a given domain
and how children advance from one developmental stage to the
next. The so-called staircase models predict that children transition
from one developmental stage to the next in sudden, discrete steps
(or stairs), suggesting that at any given point in time, children will
exclusively use one single rule. The overlapping waves model, on
the other hand, predicts that cognitive development evolves grad-
vally such that the probability of using a more complex rule
increases incrementally over developmental time and that transi-
tion periods are characterized by a mix of two consecutive rules
(e.g., Jansen & van der Maas, 2002; Siegler, 1994). From the
perspective of a cognitive toolbox, the overlapping waves model
predicts that children at times may have two alternative tools at
their disposal to solve a given task, whereas the staircase model
predicts that children will use different rules depending on their
age but that any given child will use only one particular tool.

Children’s cognitive development has been extensively studied
with the well-known balance-scale task, which requires predicting
the movement of a balance scale depending on the number of
weights and their distance from the fulcrum on each of the two
arms. Siegler (1976) initially proposed that children may use at
least four different rules (labeled Rules 1-4 by the original author)
that are characterized by an increasing integration of the weight
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Figure 4. Bayes factor (BF) of the single strategies take the best (TTBy, left) and weighted additive (WADDg,
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and distance dimension.? For example, Rule 1, the simple weight
rule, considers only the weights and disregards distance. Rule 2
takes distance into account only if the weights are equal. Rule 3
takes weights and distance into account but without knowing how
to combine them, so it often guesses. Rule 4, the multiplication
rule, derives the normative solution by multiplying the number of
weights by their distances. The rules that particular children adhere
to are commonly identified by counting how often their responses
match the rules’ predictions (Siegler, 1976).

Data. In one experiment, Jansen and van der Maas (2002)
asked 805 children and adolescents, ages 5 to 19 years, to solve 25
different balance-scale items. The items varied in complexity such
that the simplest ones could be solved by (almost) any rule,
whereas other items could only be solved by more advanced rules
requiring the integration of weight and distance. To test if chil-
dren’s strategies were better described by a single rule or by a
toolbox consisting of a mix of two consecutive rules, we applied a
similar Bayesian toolbox model as before. In particular, in a first
step, we implemented each of the four models (i.e., rules) proposed
by Siegler (1976) in BUGS based on their respective predictions
for each of the items. Next, we employed a total of three different

toolbox models consisting of two consecutive rules, respectively
(i.e., Rules 1 and 2, Rules 2 and 3, and Rules 3 and 4). Thus, for
each child, there were a total of seven candidate models—the four
single rules and the three toolboxes. The staircase theory predicts
that children’s answers at any given age will usually be best
described by one of the four single rules, whereas the wave model
predicts that some children will be better described by a toolbox,
that is, a mix of two consecutive strategies.

Method. To estimate which of the candidate models best
described the individual answer patterns, we repeatedly conducted
pairwise model comparisons using a similar implementation to that
used before.® Each pairwise model comparison yielded a BF. A
total of six pairwise comparisons were conducted in a tournament-

2 For simplicity, we only consider these four rules; additional rules have
been proposed in the literature and could also be tested through our
approach (e.g., Jansen & van der Maas, 1997).

3 When implementing the models in BUGS, the main difference from
the previous cases that had to be accounted for was that some of Siegler’s
(1976) original rules occasionally predict guessing and not deterministic
choices.
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like fashion (i.e., Rule 1 against a toolbox TB, ,, TB, , against
Rule 2, etc.). From these pairwise comparisons, the posterior
probability of each single model relative to the set of all seven
candidate models was obtained using simple algebra.

Results. Figure 5 shows that the proportion of children using
a simple rule (e.g., Rule 1) declines with age, that the medium-
complex Rule 3 peaks around the age of 12 years, and that Rule 4
is increasingly used by children above the age of 13 years.* These
results are in line with the basic notion that cognitive development
can be described as the progression through a sequence of increas-
ingly complex rules.

The results further indicate that many children were best de-
scribed by a toolbox that combined two consecutive rules. In
particular, many teenagers seemed to use a toolbox consisting of
Rules 3 and 4, and about 10% of the children ages 5 to 13 years
were best described by a toolbox that combines Rules 1 and 2. This
suggests that the cognitive development of many children in the
balance-scale task, in particular, teenagers, seemed to progress in
waves rather than in discrete steps. Note that even for the latest
developmental stage (i.e., the oldest age group), the toolbox with
Rules 3 and 4 was still prevalent, suggesting that many people
continue to use the simpler Rule 3 even at an older age. Owing to
the cross-sectional nature of the data, it is difficult to tell if the
wave model applies to all children or whether some children
switch to more complex rules in discrete steps.

Discussion. These results extend the findings reported by the
original authors in important ways. Jansen and van der Maas
(2002) analyzed the data with a latent class analysis (LCA). LCA
is related to factor analysis as it detects response patterns in the
data and the exact rules do not have to be known beforehand (van
der Maas, Quinlan, & Jansen, 2007). LCA assumes that each
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Figure 5. Proportion of children within each age group who use a
particular strategy in the balance-scale task by Jansen and van der Maas
(2002). Solid lines indicate the use of a toolbox (i.e., the combination of
two consecutive rules). Proportions were calculated by assigning the rule
with the highest posterior probability to each individual child. Proportions
within each age group add up to one.

individual belongs to one single latent class or rule. Therefore, to
test for possible switches between rules, as predicted by the over-
lapping waves model, van der Maas et al. (2007) divided their data
into blocks and then tested for consistency.

In line with the staircase model, the van der Maas LCA analysis
indicated a considerable degree of consistency in rule use across
the different blocks of the experiment. However, van der Maas et
al. (2007) also observed some inconsistencies between the blocks,
in line with the waves model. Our Bayesian analysis allows a more
detailed articulation of these results by showing exactly how many
individuals were better described by a single rule (i.e., staircase
model) as compared to a toolbox model (i.e., waves model). Van
der Maas et al. further hypothesized that Rules 1 and 2 will usually
not overlap in development. Our Bayesian analysis suggests that
these two rules may overlap but only for very few participants.

It should be noted that the inclusion of additional or alternative
strategies may change the estimated probabilities. For example,
Jansen and van der Maas (2002) tested two additional strategies.
Also, Siegler’s Rule 3 predicts random guessing for 15 of the 25
items at hand, which makes it difficult to distinguish it from
erroneous implementations of the other rules or toolboxes. The
main objective of the present analysis was to provide a proof of
concept that outlines how the cognitive toolboxes and the adjunc-
tive Bayesian model comparison techniques can be fruitfully ap-
plied to test theories in the developmental literature.

Function Learning

Function-learning research examines how people learn the func-
tional relationships between two or more variables that vary on a
continuous scale (e.g., DeLosh, Busemeyer, & McDaniel, 1997).
Recent theories on function learning resemble the idea of a toolbox
by suggesting that people’s knowledge of functional relationships
can be context specific and that several tools, referred to as rules,
strategies, or experts, often coexist in parallel and are selected
depending on the context. One theory that promotes such a
function-learning toolbox is the population of linear experts
(POLE) theory (Kalish, Lewandowsky, & Kruschke, 2004). Ac-
cording to POLE, individuals possess a repertoire of (simple)
candidate response functions, and one response function is applied
on any given trial. The framework of knowledge partitioning
(Lewandowsky & Kirsner, 2000) predicts that people rely on
context cues to selectively learn and apply functional relationships.
Likewise, von Helversen and Rieskamp (2008) argued that de-
pending on the functional relationship between the cues and a
criterion, different judgment processes take place. In contrast to
these toolbox models, other theories assume that knowledge is not
domain specific; the same process occurs independent of the
context or the structure of the task (e.g., Busemeyer, Byun, Delosh,
& McDaniel, 1997; Kelley & Busemeyer, 2008; Speekenbrink &
Shanks, 2010). Because theories on function learning apply to
continuous judgments, this example requires that we extend the
proposed Bayesian toolbox framework beyond the discrete choice
situations analyzed so far.

* For these illustrative purposes, here, the rule with the highest posterior
probability was assigned to each individual child. Averaging across the
relative probabilities of each rule yields similar results.
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Data. To test for knowledge partitioning in function learning,
Lewandowsky et al. (2002) conducted a series of experiments in
which participants learned to predict the value of one continuous
variable (i.e., the speed of wildfire spread) from another (i.e., wind
speed) in 180 trials with feedback. The underlying link function
was U-shaped such that fire speed was high for very low and very
high wind speed and was low for medium wind speed.

In the systematic context condition of the experiment, 90 train-
ing stimuli from the descending (i.e., left) part of the function were
primarily presented in one specific color context, and another 90
training stimuli from the ascending part of the function were
primarily presented in another color context (for methodological
details, see Experiment 2 of Lewandowsky et al., 2002). Thus, the
participants in this condition could partition their knowledge and
use a toolbox consisting of two rules to predict fire spread con-
tingent on the color context: a descending function for items in one
context and an ascending function for items in the other context.
Alternatively, participants could also apply a single yet compli-
cated (i.e., integrated) rule by learning the underlying U-shaped
function independent of the color context.

In a second, random-context condition, stimuli on both sides of
the U shape occurred in both colors. Thus, participants in this
condition could not partition their knowledge contingent on the
color context but rather had to revert to the full U-shaped function
to solve the task. As a measure of knowledge partitioning, all
participants eventually responded to the same transfer set of 74
new item pairs that were presented twice, once in each context. We
used this transfer set to test if participants applied the single rule or
if they partitioned their knowledge and applied a toolbox.

Method. To test if people applied a context-dependent tool-
box or a single all-purpose tool, we implemented a Bayesian model
comparison. Despite the many theoretical differences between
function learning and the previous examples from the develop-
mental and decision-making literature, similar Bayesian model
comparison techniques apply because the theories share a common
toolbox assumption.

There are, however, some differences with respect to the details
of the respective tools and how they are selected. In the previous
examples, the probability of selecting one tool over the other was
a free parameter that was estimated from the data, and the mag-
nitude of this parameter was of potential interest in itself. In
Lewandowsky et al.’s (2002) function-learning experiment, this
parameter was replaced by an explicit theory of how the tools are
selected. Accordingly, it was assumed that the color context de-
termined which rule was selected. Therefore, the toolbox consist-
ing of the two context-specific tools was implemented as two
separate linear functions that linked wind speed (w) to fire spread
(y) for all stimuli i. The two functions were indexed by an indicator
variable ¢ that represented the context (i.e., the color) of the
stimuli:

Yi = Yeo + Yel X Wi, (5)

so that a total of four y parameters (two for each single tool) were
estimated from the data.

As the alternative to this toolbox model, we defined the single
function-learning tool as a quadratic function, irrespective of the
color context:

Vi = Yo ¥ X W, + vy X W] (6)

Here, three v coefficients had to be estimated from the data.

The models were implemented in BUGS using the so-called
Zellner’s g prior (Ntzoufras, 2009; Zellner, 1986). The g prior
assigns the y parameters a multivariate normal distribution with a
prior variance that is 1/n times as important as the variance of the
maximum likelihood estimate for . This prior is said to contain as
much information as a single observation, and it is a popular
default choice in Bayesian model selection for linear regression
(see also Wetzels, Grasman, & Wagenmakers, in press). Wind
speed and fire spread were normalized before entering the model.
Just as in the previous case, a binary model indicator variable was
established in BUGS to estimate the probability of one model over
the other on the individual level.

Results. Figure 6 shows that in the systematic context condi-
tion that allows toolbox use, the data from eight of 24 participants
clearly provides evidence for a knowledge-partitioning toolbox
over a single all-purpose quadratic model. In contrast, the qua-
dratic model provided a better description for all but one partici-
pant in the random context condition.” Because the experiment
was set up such that the test items clearly differentiated between
the two strategies, for most participants, the evidence was clear
and decisive, as indicated by the large BFs.

Discussion. The results show how the cognitive toolbox con-
cept readily applies to the function-learning research. Some par-
ticipants in the systematic context condition used a toolbox (i.e.,
they partitioned their knowledge), whereas participants in the
random control condition were best described by a single judgment
strategy. These findings are in line with the conclusions of Le-
wandowsky et al. (2002). Our Bayesian approach was able to
uncover and quantify important interindividual differences: Not all
participants in the systematic context condition partitioned their
knowledge—a substantial number of participants also applied an
all-purpose quadratic rule and apparently ignored the context. This
heterogeneity seems plausible in light of the original hypothesis
that both strategies work well in the systematic context condition.
Note that in the present study, strategy selection was determined
by the context. Despite this difference from the previous examples
where selection was a free parameter, the Bayesian approach could
nevertheless be applied in the same vein.

Categorization

The idea of a cognitive toolbox is also prevalent in the catego-
rization literature. Little and Lewandowsky (2009), for instance,
showed empirically that people use different categorization rules
depending on the context. Ashby and Maddox (2005) concluded in
their review that people commonly use multiple and qualitatively
different rules or strategies to categorize objects. The idea that
categorization responses may rest upon qualitatively different tools
or mixtures of experts can also be found in recent categorization
models such as RULEX (Nosofsky, Palmeri, & McKinely, 1994),
PRAS (Vandierendonck, 1995), and ATRIUM (Erickson &

5 The evidence in favor of knowledge partitioning in the systematic
context condition becomes even stronger if the toolbox model is imple-
mented as a mix of two quadratic rather than two linear functions. See
online supplemental material for the results of this implementation.
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Figure 6. Reanalysis of Lewandowsky, Kalish, and Ngang’s (2002) Experiment 2 data. Bars represent Bayes
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(gray bars) indicate stronger evidence for knowledge partitioning. BFs are truncated at 10'° and 107'°.

Kruschke, 1998).° All these models assume different cognitive
processes underlying categorization. These recent models differ,
however, from many early theories on categorization that assume
a single, all-purpose categorization process independent of context
(Ashby & Maddox, 2005). In sum, the categorization literature is
another domain in which a rigorous test of the cognitive toolbox
idea is crucial for theoretical advancement.

Data. To assess the extent to which categorization can be
described by a single all-purpose tool versus a mixture of different
context-specific tools, Yang and Lewandowsky (2004, Experiment
1) had participants learn to classify geometric objects into one of
two categories. The objects were described along two continuous
dimensions x and y that represented the position of a vertical
segment and the height of a rectangle, respectively. Category

membership depended on a specific parallel boundary rule that
described a complex interaction between the x and y dimensions.
Each object was further presented in one of two colors, the
so-called context cue that is similar to the experimental manipu-
lation of Lewandowsky et al. (2002), discussed in the previous
example.

The categorization study featured two experimental conditions
that varied between participants: In the systematic context condi-
tion, color in itself did not predict category membership, but

®In contrast to a pure toolbox model, ATRIUM assumes that the
categorization responses produced by the different modules are subse-
quently weighted and integrated into a final response.
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same-color objects could be classified by a somewhat simple rule
that consisted of a linear combination of the x and y dimensions.
As this rule was different for each color, participants in this
condition could either learn the complex all-purpose parallel
boundary rule or they could learn to use a toolbox consisting of
two rules that each worked well in the respective color contexts. In
the random context condition, color was randomly assigned to the
object. As color carried no systematic information in this condi-
tion, here participants could only apply the all-purpose complex
parallel boundary rule. To test which classification rule was ap-
plied, a similar procedure was used as in the function-learning
experiment: All participants saw the same set of 40 novel test
objects once within each color context, so that the parallel bound-
ary rule and the toolbox made different predictions.

Method. To test if participants’ classification strategies could
be described based on a cognitive toolbox consisting of two
different, context-dependent rules, we compared it to the alterna-
tive parallel boundary model.” As this comparison closely resem-
bles the previous toolbox examples, similar Bayesian techniques as
before were applicable after some initial data recoding. We esti-
mated the posterior probability of the single parallel boundary
model over the toolbox individually for each of the 48 participants
(24 in each condition).

Results. As shown in Figure 7, in the systematic context
condition, about half the participants (10 of 24) were better de-
scribed by a toolbox, indicating knowledge partitioning. In con-
trast, in the random context condition, all but two participants were
best described by the parallel boundary rule. As in the previous
case of function learning, for most individuals in the experiment,
the obtained evidence for either model was decisive.

Discussion. The example above demonstrates how the theo-
retical concept of cognitive toolboxes can be fruitfully applied to
models of category learning and that the Bayesian techniques for
testing toolboxes also inform theories in this research area. Our
analysis confirms the results reported by Yang and Lewandowsky
(2004) that participants used qualitatively different strategies de-
pending on the experimental condition and that most participants
in the systematic context condition nevertheless used an all-
purpose classification strategy instead of a toolbox. Furthermore,
the results provide BF estimates of the parallel boundary model
over the toolbox model, that have an intuitive and transparent
interpretation and that go beyond the explorative k-means cluster
analysis in the original study that left some participants unclassi-
fied.

Adding Tools to the Toolbox—The Case
of Strategy Sprawl

So far, the toolboxes we tested consisted of only two strategies.
Could a toolbox with more tools describe the data in the examples
above even better, or should we avoid adding tools and stick to
simple toolboxes? Perhaps some children in the experiment by
Jansen and van der Maas (2002) actually used a mix of three or
even more rules to solve the balance-scale task. Maybe it is
advisable to add a third tool to the decision-making toolbox in the
experiment by Rieskamp and Otto (2006). Certainly, adding yet
another tool would increase the flexibility of any toolbox. It is less
clear, however, if this increase in complexity actually yields ad-

ditional insights into the underlying cognitive processes or if it
would foster strategy sprawl.

Data. To test if adding another tool to the toolbox is justified,
we returned to the data of Rieskamp and Otto (2006) and extended
the toolbox with a tallying strategy (TALLY; Dawes, 1979).
TALLY predicts that pairs of options are compared along their
cues and that the option that is superior on the majority of cues is
chosen. In essence, TALLY is a rather simple compensatory
strategy that has been successfully applied to predict people’s
inferences (Broder, 2000; Mata et al., 2011). Adding TALLY,
provides an interesting case as the strategy was not reinforced by
Rieskamp and Otto. Thus, even though the extended toolbox
TB g wapp.aLLy 18 €ssentially more flexible in fitting the ob-
served choice data, this increase might not translate into stronger
evidence in this case.

Method and results. To test the toolbox extended with
TALLY,, we applied the same Bayesian method as before to
compare the toolbox consisting of three strategies to a toolbox with
only two strategies. As the original experiment was not designed to
test for TALLY,, the strategy sometimes does not discriminate
between the option pairs, and its predictions often overlap with
those of one of the other two strategies. As this effectively de-
creases the number of discriminating data points, smaller (i.e., less
decisive) BFs are expected compared to some of the previous
examples. For example, always using TALLY, with no error
yields a BF of 15 (compensatory condition) and 8 (noncompensa-
tory condition) in favor of the larger toolbox that includes
TALLY,. In comparison, always applying WADD, with no error
yields a BF of 12 and 13, respectively, for the smaller toolbox.

Figure 8 shows that within these limits, most participants in
Rieskamp and Otto’s (2006) experiment were better described by
the smaller toolbox, in particular so in the compensatory experi-
mental condition. Adding TALLY, as an additional tool appar-
ently was mostly not justified in the light of the observed data.

Discussion. The results showed how a toolbox with only two
strategies outperformed a toolbox with more strategies, thus pro-
viding an example of how the Bayesian method tackles strategy
sprawl and restricts the number of strategies within a toolbox.
Although a larger toolbox can fit more diverse data, in the present
case, the increased model complexity was not offset sufficiently by
the increased goodness of fit. Rather, a simpler, more parsimoni-
ous model was best in predicting behavior.

Testing a Toolbox Against Alternative Models

The previous section showed how toolboxes of different sizes
can be compared against single cognitive strategies. The same
Bayesian approach allows us to test a toolbox against alternative
cognitive models that are conceptually different and that are not
nested within the toolbox.

As an example for such a comparison, we return to the literature
on decision making. Here, exemplar models have been suggested
as an alternative to rule-based models. Past research found that
exemplar models are able to predict people’s cognitive processes
in various domains, including memory (Hintzman, 1988), autom-
atization (Logan, 1988), likelihood judgments (Dougherty, Gettys,

7 See Appendix A for the implementation of the categorization model at
hand.
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Figure 7. Reanalysis of the data from Yang and Lewandowsky’s (2004) Experiment 1. Bars represent Bayes
factors (BFs, logarithmic scale) of the parallel boundary rule over knowledge partitioning (i.e., toolbox use) for
each individual participant in the systematic context condition (upper panel) and in the random condition (bottom
panel). Positive values (black bars) indicate stronger evidence for the parallel boundary rule; negative values
(gray bars) indicate stronger evidence for knowledge partitioning. BFs are truncated at 10'° and 107 '°.

& Ogden, 1999), and attention (Logan, 2002). Juslin and Persson
(2002) also proposed exemplar-based models for describing judg-
ment processes (see also Juslin, Jones, Olsson, & Winman, 2003;
Juslin, Olsson, & Olsson, 2003). Unlike rule-based strategies such
as TTB or WADD, exemplar models rely on a similarity-based
judgment process. Exemplar models assume that judgments are
made by comparing the present situation (probe) with similar
situations (exemplars) stored in memory. Exemplar models require
memory and retrieval processes to perform the task. Thus, they are
usually considered conceptually different from rule-based models
that rely on abstract knowledge (Juslin, Jones, et al., 2003; Nosof-
sky & Johansen, 2000).

Data and method. We compared an exemplar model of
choice against a toolbox based on the empirical choice data of

Rieskamp and Otto (2006) already analyzed above. The exemplar
model was adapted from Juslin, Jones, et al. (2003) with one free
parameter to model the attention weight s that represents the
subjective importance of each cue when determining the similarity
to previously encountered options.® The attention weight varied on
a scale from 1 (not important) to 0 (very important). For simplicity
and consistency with past research, we assumed identical attention
weights for all cues (e.g., Persson & Rieskamp, 2009; von Hel-
versen & Rieskamp, 2008). We set the prior on s to be uniformly

8 See Appendix B for the conceptualization of the exemplar model on

hand.
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Figure 8. Bayes factor (BF, logarithmic scale) of the two-strategy tool-
box TBrrg wapp Over the three-strategy toolbox TB g wapp raLLy- Bars
represent estimates for each participant in the experiment by Rieskamp and
Otto (2006), ordered by BF. In the noncompensatory condition (upper
panel), take the best (TTB) was reinforced; in the compensatory condition
(lower panel), the weighted-additive (WADD) strategy was reinforced.
Positive values (black bars) indicate stronger evidence in favor of the small
toolbox, whereas negative values (gray bars) indicate stronger evidence for
the larger toolbox.

distributed in the range of 0 to 1; the TB g wapp Model consist-
ing of WADD, and TTB, was implemented as before.

Results and discussion. Only four out of the 20 participants
who were reinforced to use TTB in the noncompensatory condition
were better described by an exemplar model. As shown in Figure
9 (upper panel), the evidence was substantial for only two partic-
ipants. In contrast to this, the evidence in favor of TB g wapp
was much stronger for the 16 remaining participants.

In the compensatory condition, where participants were rein-
forced to use WADD, the evidence against the exemplar model
was even stronger. As shown in Figure 9 (lower panel), for 19 out
of 20 participants, the BF strongly favored the toolbox model.

The toolbox’s superiority over the exemplar model is also
evident when comparing the choices predicted by both models to

the choices made by the participants. Figure 10 shows that when
the model parameters were sampled from the estimated joint
posterior distribution, the predictions of TB.rp wapp Provide a
better match to the observed choices than the exemplar model.
This posterior predictive evaluation further reveals that the exem-
plar model is still a reasonable model, as, for most participants, its
predictive accuracy is clearly above chance level. In sum, for the
experimental data of Rieskamp and Otto (2006), the toolbox model
described the choice data better than the exemplar model. This
result seems plausible as the participants were encouraged to use
either TTB, or WADD, and the toolbox model contains both
strategies.
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Figure 9. Bayes factor (BF, logarithmic scale) of the exemplar model
over the toolbox TBrrgwapp. Columns represent estimates for each
participant in the experiment by Rieskamp and Otto (2006), ordered by BF.
In the noncompensatory condition (upper panel), take the best (TTB) was
reinforced; in the compensatory condition (lower panel), the weighted-
additive (WADD) strategy was reinforced. Positive values (black bars)
indicate stronger evidence in favor of the exemplar model, whereas neg-
ative values (gray bars) indicate stronger evidence for TBrg wapp- BFs
are truncated at 10,
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Figure 10. Posterior predictive evaluation of the toolbox TByrg wapp
and the exemplar model for each participant in the experiment by
Rieskamp and Otto (2006), ordered by Bayes factor (asterisks indicate
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the best (TTB) was reinforced; in the compensatory condition (lower
panel), the weighted-additive (WADD) strategy was reinforced. A value of
.5 indicates chance level, whereas a value of 1 would show that all choices
were correctly predicted. The figure shows that for most participants,
TBrrp.wapp achieved a higher predictive accuracy than the exemplar
model. Error bars extend to 1.5 times the interquartile range.

Part III: Testing Toolbox Models on the Group Level

When testing a cognitive theory, the ultimate goal is often to
draw conclusions about a specific group of people or even the
general population. One way to achieve this would be to pool
the data across all individuals and estimate the models based on
the aggregated data set as if it originated from a single person.
Although feasible, this complete pooling approach ignores pos-
sible variations and differences among individual decision mak-
ers (Gelman & Hill, 2007). Furthermore, the averaged data
might not be representative of any of the single individuals who
produced the data (Estes, 1956; Heathcote, Brown, & Mewhort,
2000).

One way to address this problem would be to test theories only
on the individual level, similar to the approach we used before.
However, assuming that the choices of one person are completely
independent from those of another person makes it difficult to
generalize the results and to test and compare models on the group
level. This complete independence assumption also neglects com-
monalities between individuals; it is plausible that parameter esti-
mates of one individual may also inform the parameter estimates
of another, presumably similar person. If people are analyzed
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independently, this information is lost. Neglecting possible simi-
larities between individual estimates also entails the risk of ex-
treme estimates for individual people that may be unlikely given
the distribution of the model estimates on the group level (Gelman
& Hill, 2007). These have led to increased interest in hierarchical
or partial-pooling approaches, as they are able to describe both the
commonalities and the differences between individuals (Cohen,
Sanborn, & Shiffrin, 2008; Gelman & Hill, 2007; Nilsson,
Rieskamp, & Wagenmakers, 2011; Rouder & Lu, 2005). In the
hierarchical approach, a balance between complete pooling and
complete independence is achieved by assuming that the individ-
ual parameter estimates for each individual stem from higher level
group distributions. As these group-level distributions are esti-
mated themselves, it is not necessary to determine the actual
degree of pooling beforehand. Rather, the similarity between
group members and the degree to which the individual estimates
are mutually informative follow from the observed data and the
structure of the hierarchical model.

As we outline in several concrete steps below, this principle is
very useful as a more elaborate way of testing and comparing
cognitive toolboxes on the group level. We first conducted a model
recovery study on to the group level and then applied the method
to empirical data.

Simulated Choice Data on the Group Level

For the hierarchical group-level approach, we extended our
initial simulation by repeatedly simulating 20 synthetic partici-
pants who each made 80 pairwise choices. Within each group of 20
individuals, we set the proportion of participants who applied
Strategy A, (denoted ¢,) to either 1 (all group members applied
A,) or 0.9. Here, ¢, = 0.9 indicated that 18 of 20 participants
chose according to A, (i.e., f = 1) and the remaining two chose
according to Strategy B, (i.e., B = 0). As a second factor, we
varied the mean application error E between groups from 0.025 to
0.975 in steps of 0.05. Within each group, the individual € values
assigned to each individual slightly varied around E (0.025 was
added to E for half of the individuals and subtracted for the other
half) to allow for some variance between individuals. The combi-
nation of different parameter values resulted in a total of 40
independent groups. For each of these synthetic groups, we esti-
mated the posterior probability of a simple A, model over a more
complex toolbox TB, g on the group level.

Hierarchical extension of the Bayesian method. To develop
the hierarchical extension of the Bayesian method previously
applied on the individual level, we defined a normally distrib-
uted group-level distribution for each parameter of the choice
strategies. Prior distributions were assigned to the respective
means p and variances o of these group-level distributions. As
the possible parameter values for the application error € and the
mixture proportion parameter (3 on the individual level only
ranged from O to 1, they had to be rescaled into normally
distributed values through a probit transformation to allow for
proper aggregation on the group level (Rouder & Lu, 2005). For
easier interpretation, the obtained group-level parameters were
later retransformed to the original rate scale of O to 1.

The prior distributions for w and o were set such that the
resulting values would be uninformative on the original rate scale.
Specifically, for the prior on ., we used a normal distribution with
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mean 0 and variance 1. The prior on o was uniform with a
minimum of 0.001 and a maximum of 4 on the probit scale to
prohibit extreme distributions on the original rate scale. In this
way, group-level distributions were assigned to all model param-
eters, including the individual application error of the single strat-
egy, €,; the application error for the toolbox strategies, €rg; and
the mixture parameter 3 in the toolbox. In a final step, we imple-
mented a transdimensional model indicator on the group level in
BUGS, indicating the overall probability of the models across all
participants.

Results of the group-level model comparison. Figure 11
shows that when all 20 decision makers used A, (¢, = 1) with
only a small mean application error (E = 0.025), the estimated BF
of A, over TB,  on the group level indicated extreme evidence
(BF > 1,000) in favor of A,. Figure 11 also shows that the
evidence for the data-generating Strategy A, remains very strong
even for relatively high application errors in the simulation. How-
ever, if only two individuals within a group of 20 (¢, = 0.9) used
B, and not A_, the BF clearly favored the toolbox model. For small
application errors, the BF in favor of the toolbox was extreme (i.e.,
BF > 10°), and even for relatively high application errors up to
about 60%, the evidence in favor of the toolbox was still decisive.

Figure 11 further shows that if the application errors become
very high (i.e., between about 0.7 and 0.9), the toolbox becomes
slightly less probable as compared to A., even though 2 of 20
participants in the simulation used B, (i.e., ¢, = 0.9.) This is
probably because the number of genuine B, choices in these
simulated data became very small relative to A, so that eventually
the more parsimonious single A, model was preferred. With an
application error near 1, indicating random choice, the models can
no longer be differentiated.

Discussion. The hierarchical Bayesian approach showed
strong evidence in favor of a simple model if all individuals within
a group applied the simple model. Once even a minority used a
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Figure 11. Evidence of the single strategy A over the toolbox TB, g for

a group of 20 simulated decision makers making 80 choices each depend-
ing on the mean application error E and the proportion ¢, of A, users over
B, users set in the simulation. The left y-axis indicates the advantage of A,
over TB, g, expressed as the Bayes factor (BF, logarithmic scale). The
right y-axis provides an approximate interpretation of evidence strength.
Here, higher values indicate evidence in favor of A,, whereas negative
values indicate evidence for TB, . Values are truncated at 107°.

different strategy, the Bayesian analysis indicated strong evidence
in favor of a more complex model incorporating the heterogeneity
in strategy use within the group. These results are plausible as the
single A, strategy could not account for the choices of those group
members who used Strategy B, consistently. As a consequence,
the Bayesian analysis correctly inferred that it was very unlikely
that the single model generated all of the observed data.

Comparing Toolbox Models on the
Group Level Based on Empirical Data

The hierarchical Bayesian analysis readily applies to empirical
data across a wide range of research areas that rely on the notion
of cognitive toolboxes. We illustrate how the Bayesian approach
can enhance data analysis and theory building on the group level
with the decision-making experiment of Rieskamp and Otto
(2006). The goal was to decide if the group of all 20 decision
makers within each experimental condition was better described
by a toolbox TBrrgwapp Or just a single-decision strategy
(WADD, or TTB,). It is unclear how the parameter estimates
obtained from a no-pooling approach on the individual level
should be aggregated on the group level. In contrast, the proposed
hierarchical, partial-pooling approach provides a principled way of
drawing conclusions on the group level by taking all individual
data into account simultaneously.

The above group-level simulation already indicated that a single
strategy is only preferred on the group level if individual decision
makers were very homogeneous, that is, if almost all used a single
strategy. Furthermore, the above individual analysis of the
Rieskamp and Otto (2006) data also showed that not all partici-
pants used the reinforced single-decision strategy. Rather, a few
individuals were clearly identified as toolbox users on the individ-
ual level. Thus, we can predict that the more flexible TB-r15 wapp
model should be more probable for the Rieskamp and Otto data on
the group level.

Method and results. The model comparison was imple-
mented based on routines similar to those used for estimating the
simulated choice data. In line with the hypothesized results, the
group-level BF for TBy rgwapp Over the reinforced single-
strategy model was in excess of 10° (i.e., the numerical limit of our
estimation routine) for both experimental conditions. This clearly
indicates that on the group level, the toolbox model described the
data better than any of the single strategies.

Discussion. Although at first glance the estimated BFs in
favor of the toolbox on the group level may appear rather high, the
results are in line with the findings of the previous group-
simulation study: Unlike the flexible toolbox model, a single
strategy cannot explain the heterogeneity between group members.
Thus, although most individual decision makers in the compensa-
tory condition (14 of 20) were best described by the single
WADD, model, the same cannot be said of the remaining minority
of participants. Because the TB g wapp model can account for
both cases, the Bayesian approach correctly indicates that it is the
more probable model on the group level. The same reasoning also
holds for the noncompensatory experimental condition, where
even more participants were classified as toolbox users on the
individual level. The hierarchical group-level extension of the
proposed Bayesian method illustrates the strength of the toolbox
approach in general: A toolbox model is able to describe the
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substantial heterogeneity across and within individuals of how
they solve the problems they face.

Posterior group-level distributions. In addition to the model
comparison, the hierarchical Bayes model also allowed us to draw
detailed conclusions about all model parameters on the group
level. Here, the group-level distribution of the mixture proportion
of WADD, over TTB, was of particular interest as it allowed us to
quantify the prevalence of using one strategy over the other across
all individuals (see Dennis, Lee, & Kinnell, 2008, for a similar
procedure). As shown in Figure 12, in the noncompensatory con-
dition, a mean mixture proportion of .71 in favor of TTB, was
found on the group level. The highest density interval of this
posterior distribution (HPD,) ranged from .60 to .81. This clearly
indicates that decisions in this group were based more on TTB,
than on WADD,. In the compensatory condition, this group-level
mixture proportion was estimated at .10 (HPDys of .04-.16),
indicating a clear preference for using WADD, over TTB; in this
condition. As the highest posterior density intervals of the two
estimates were far apart, the probability of using TTB, over
WADD, clearly differed between the two experimental conditions,
illustrating the effect of the experimental manipulation.

The obtained hierarchical group-level estimates are different
from estimates obtained by merely averaging across all 3 estimates
in the individual analysis. For example, in the compensatory
condition, such a simple average yields a mean 3 of 0.15 with a
95% confidence interval from 0.098 to 0.197 across the 20 partic-
ipants. This underestimates the prevalence of using WADD, on the
group level; the Bayesian group-level estimate does not even fall
within the confidence interval of the simple mean. For data that
contain outliers or if the number of observations differs between
individuals, the bias induced by simply averaging across individual
data may become even larger, further underscoring the advantages
of the hierarchical Bayesian approach (see also Gelman & Hill,
2007).

Group-Level Comparison Against Alternative Models

Finally, we extended the group-level approach to examine if the
decisions of a group of people as a whole were better described by
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Figure 12. Posterior distribution of the mean group-level mixture pro-
portion w(Brg) of take the best (TTBg) over the weighted-additive
(WADD,) strategy for both experimental conditions in the study by
Rieskamp and Otto (2006). Higher mixture proportions indicate a higher
prevalence of TTB, over WADD; on the group level.

a toolbox model or by an alternative, nonnested model. Comparing
qualitatively different models on the group level is an important
challenge that is significant for theory building in many areas in
psychology.

Data. Similar to the nonnested model comparison on the in-
dividual level, we again used the empirical choice data of
Rieskamp and Otto (2006). The results on the individual level
suggest that the toolbox TB g wapp Will be more probable on the
group level than the exemplar model. However, putting this pre-
diction to the test requires a hierarchical Bayesian approach that
allows us to quantify the evidence in favor of one model over the
other in a principled way.

Method and results. The implementation of the hierarchical
TB g wapp model was similar to the one outlined in the group
analysis above. For the exemplar model, we extended the model
implementation previously used to estimate individual participants
with a group-level normal distribution to partially pool the indi-
vidual attention parameters s,. Priors were assigned to the mean
and variance of this group-level distribution. The basis of the
model comparison was again a transdimensional model indicator
implemented in BUGS.

As expected, the group-level BF for TB g wapp Over the
exemplar model was in excess of 10° for both the compensatory
and the noncompensatory conditions. This indicates decisive evi-
dence in favor of TBy5 wapp ON the group level.

Discussion. The results show how toolbox models can be
rigorously compared to alternative models of cognition. The same
principles can also be applied to toolboxes containing other tools
or to alternative cognitive models across various fields of research
in psychology as long as these models can be thoroughly specified.
The hierarchical approach provides a principled method for par-
tially pooling the data from each single group member such that
meaningful conclusions can be drawn on the aggregate level. At
the same time, the individual estimates are mutually informed by
the estimates of other group members.

This group-level extension readily applies to other research
areas in psychology. For example, in Jansen and van der Maas’s
(2002) balance-scale experiment, most children ages 5-7 years
were best described by Siegler’s (1976) Rule 1, and hardly any
child used Rule 4. Thus, it would be interesting to test if Rule 4
should even be included within the set of possible models for
children in this age group. Likewise, even though many children
above the age of 10 years seem to use a toolbox consisting of Rules
3 and 4, it would be interesting to test if the probability of applying
Rule 4 over Rule 3 within the toolbox increases across the different
adolescents’ age groups, an analysis that would provide important
insights on how children’s and adolescents’ cognitive strategy use
develops over time. Although both questions can be readily an-
swered by means of the outlined hierarchical analysis, for brevity,
we do not report the results of such an analysis here. Likewise for
brevity, we do not present a hierarchical analysis on the group
level for the function-learning and categorization research de-
scribed above, as our main goal was to outline and illustrate the
theoretical and methodological advantages of using a (Bayesian)
toolbox approach.
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General Discussion

Researchers in psychology have often built their theories on the
idea of a strategy repertoire or toolbox that contains a set of
cognitive strategies. This approach provides a fruitful framework
for modeling cognitive processes, as it accounts for the variability
between individuals and it can explain why the same person often
behaves differently in nearly identical situations. Although the
framework has been applied across several areas in psychology
with considerable success, it comes with a number of methodolog-
ical and theoretical challenges that make it difficult to rigorously
test and compare toolbox theories as a whole. To overcome these
challenges, we outlined a unifying Bayesian approach that we
tested based on model recovery studies and empirical data from
various research fields including judgment and decision making,
cognitive development, function learning, and perceptual catego-
rization. The flexibility of the approach was further illustrated
through comparisons of toolboxes of different size and through
comparisons with qualitatively different models. In all these cases,
the approach provided novel insights and yielded precise, consis-
tent, and readily interpretable results that rely on a common
comparison metric that incorporates both model complexity and
goodness of fit.

Trade-Off Between Goodness of Fit and Parsimony

A larger cognitive toolbox may provide a better fit to the
observed data because of its greater flexibility, but it may not
necessarily provide the best explanation of the underlying cogni-
tive processes (Myung, 2000). Our results indicate that the Bayes-
ian method is well suited for trading off complexity against good-
ness of fit and hence preventing strategy sprawl: A person who
consistently uses one strategy is best described by a simple model
that resembles this particular strategy as compared to a more
complex toolbox that includes the single model. However, once a
person starts using a mix of strategies, the Bayesian approach can
account for this situation by endorsing a toolbox.

The same principle holds for analyses on the group level: If
most individuals within a given group consistently use the same
strategy, a simple model that matches this strategy is preferred
over a toolbox that allows for individual differences in strategy use
between group members. However, once some group members
also use other strategies, a group-level toolbox that allows for such
heterogeneity is preferred. In the latter case, Bayesian techniques
further provide the posterior probability of selecting each of the
tools within the toolbox on the group level.

Bayesian Model Selection

In the Bayesian framework, model complexity can be thought of
as the number of different predictions the model can make. As
mentioned earlier, a complex model can generate many different
predictions, so that the prior probability of each of these pre-
dictions is relatively small (Jefferys & Berger, 1992). In con-
trast, the predictions of a simple model are relatively restricted,
so that the prior probabilities are relatively high. This effect
carries over to the posterior probability of the model because
the likelihood of the data given a specific combination of
parameters is weighted by their prior probability. Thus, even

though greater flexibility may help to increase the likelihood of
the observed data for a specific subset of the parameter space,
this increase is counteracted by a lower prior probability of the
observed data in the remainder of the parameter space.

This mechanism can be illustrated for the decision-making area
with a simple review of the comparison between TTB, and
TB g wapp- TTB; has one free parameter (the application error
€prp), Whereas TB g wapp has two parameters (the application
error €r and (3, the probability of using TTB, over WADD,).
Because of its higher flexibility, TB g wapp €an account for
different kinds of observed choice data, but consequently, the
model does not make firm predictions before the data come in (cf.
Vanpaemel, 2010). In the Bayesian framework, the higher flexi-
bility of TB g wapp 18 discounted because the prior probabilities
must be defined for each possible combination of parameter val-
ues. As the joint prior distribution across the parameter space must
integrate to one, the prior probability of each prediction decreases
with the total number of possible predictions. It is due to this
principle that more flexible models are implicitly penalized. Nev-
ertheless, the data may sometimes warrant additional flexibility: If
the likelihood for the more flexible toolbox is much higher than the
likelihood for the simple model, the penalty for additional flexi-
bility will be offset.

Numerical Estimation Techniques

The suggested Bayesian approach to testing toolbox models
requires one to estimate the BF and the posterior model probabil-
ities. For elaborate cognitive models such as toolboxes, these
quantities usually cannot be obtained by means of closed-form
mathematical solutions. Instead, they must be approximated
through numerical techniques such as MCMC methods. These
methods can be implemented relatively easily using one of several
software packages; here, we used the BUGS language imple-
mented in the software package WinBUGS that runs on any
conventional desktop computer and provides a long series of
samples from the desired posterior distributions within a reason-
able amount of time, even for relatively complex hierarchical
models.

Alternative Methods for Comparing Toolbox Models

Apart from the Bayesian techniques outlined here, many alter-
native methods exist to compare and select between competing
cognitive models. All these methods have to negotiate the com-
promise between goodness of fit and parsimony, but they achieve
this compromise in different ways. Here, we discuss the most
prominent methods, with particular focus on how they are similar
to and different from the Bayesian technique discussed above.

Bayesian information criterion. One popular method is to
quantify and correct for model complexity solely through the
number of free parameters. This procedure provides the basis for
statistical indices such as the Akaike information criterion (AIC;
Akaike, 1973; Burnham & Anderson, 2002) and the Bayesian
information criterion (BIC; Masson, 2011; Myung, 2000; Raftery,
1995; Schwarz, 1978; Wagenmakers, 2007; for a discussion on the
differences between the AIC and BIC, see, e.g., Karabatsos, 2006;
Vrieze, 2012).

As the name suggests, the BIC was derived as an approximation
of the BF. This approximation is particularly good if the models
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under comparison are nested, such that one is a simplified version
of the other (Kass & Wasserman, 1995). Another advantage of the
BIC is that it is relatively straightforward to compute; the BIC is
given by BIC = —2 X In L + k X In n, where In L is the log
maximum likelihood, & is the number of free parameters, and »n is
the sample size. This simplicity, however, comes at a cost: The
BIC ignores interactions between parameters and is blind to dif-
ferences in the parameters’ functional form (Karabatsos, 2006;
Myung & Pitt, 1997, 2009; Pitt, Myung, & Zhang, 2002).

To illustrate that the BIC may sometimes provide a poor ap-
proximation of the BF, consider again the previous simulation
study that compared a toolbox TB, g consisting of two strategies
A, and B, against a single strategy A, on the individual level.
Here, using the same priors as before, synthetic data consisting of
60 pairwise choices—80% in line with Strategy A, and the re-
maining 20% in line with Strategy B, with no application error
(ie., €, = &g = 0)—yield a BF of 5.7 in favor of the toolbox
TB, g. In contrast, the BIC, estimated by means of maximum-
likelihood techniques, approximates a BF of 11.5, thus overesti-
mating the evidence in favor of the toolbox by a factor of two.’

The limitations of the BIC in this context become even more
apparent when altering the model’s functional form. Consider, for
instance, the study of Rieskamp and Otto (2006). Here, people
using a WADD, strategy will most likely have a higher application
error than people using the simple TTB, strategy because the
former requires, on average, a larger number of processing steps.
One way to model this is by setting &yapp = Eprp Within the
toolbox—a constraint that limits the possible parameter range
without affecting the number of parameters. Estimating this mod-
ified toolbox based on the same simulation data as before (N = 60
choices, 80% in line with TTB, and no implementation error)
yields a BF of 5 in favor of the constrained toolbox. In comparison,
a toolbox with two independent (i.e., unconstrained) error terms
yields a BF of only 2.2. This decrease seems justified because the
simulated choice data fell within the range of the more constrained
toolbox. In contrast, the BIC approximation yields a BF of 1.5 in
both cases, irrespective of the change in functional form.

In other contexts, different changes in functional form may be
justified for theoretical reasons or based on prior knowledge about
the task. For example, if participants in a given experiment were
encouraged to use a strategy B instead of A, the prior probability
of B, will be higher than that of A,. To reflect this, the previous
uniform prior distribution on the 3 parameter that describes this
probability within the toolbox may be replaced, for instance, with
a beta(1,4) prior distribution that increases the prior probability to
Strategy B,. With respect to the same simulation data of 60 choices
described above, this change should decrease the posterior prob-
ability of the toolbox because most observed choices were actually
in line with A. In line with this intuition, the BF now indicates the
opposite from before, namely, a preference against the toolbox,
indicating that now the data are 3 times more probable under A,
than under the toolbox. The BIC estimate, on the other hand,
remains unchanged and still suggests a BF of 1.5 in favor of the
toolbox. More extreme changes in functional form (e.g., stronger
priors or range restrictions for some of the parameters) may lead to
even bigger deviations between the Bayesian approach and the
BIC approximation.

Nevertheless, in many situations, the BIC may provide a good
approximation of the BF. For example, in the previous analyses of

the data on function learning (Lewandowsky et al., 2002) and
categorization (Yang & Lewandowsky, 2004), the BIC yields
conclusions that were very close to those reached by the exact
Bayesian methods that required much more effort to implement. In
many model comparison situations, it might be difficult, though, to
decide in advance whether the BIC approximation will lead to
accurate conclusions.

In sum, parameter-counting model selection methods such as the
BIC have the advantage of simplicity and may work well in many
situations. Unfortunately, though, these methods are insensitive to
functional form complexity, and—as illustrated above—this
means that in certain situations, they may fail completely (e.g., as
for order-restricted inference; Hoijtink, 2001).

Cross-validation. One model comparison technique that im-
plicitly takes complexity into account beyond the mere number of
parameters is cross-validation (Stone, 1974). In cross-validation,
the observed data are split into two (or more) subsamples. One
calibration sample is used to estimate the models’ parameters, and
in a second step, the predictive accuracy of the fitted model is
tested using the second crucial validation sample (Browne, 2000).
Although cross-validation provides a rough method for trading off
model complexity against fit, the best way to split data into
different samples is unclear, and crucially, different splitting meth-
ods can lead to different results and conclusions (see Shao, 1993,
1997). Alternative cross-validation approaches, such as leave-one-
out, have been shown to overfit the data (i.e., to select models that
are overly complex, just as the AIC does; see Stone, 1977).
Finally, in contrast to Bayesian model comparison, cross-
validation does not quantify model preference in terms of proba-
bility, making it difficult to calibrate and interpret the results.

Accumulative one-step-ahead prediction error. As with
cross-validation, the idea behind one-step-ahead accumulative pre-
diction error (APE; Dawid, 1991; Luan, Schooler, & Gigerenzer,
2011; Rissanen, 1986b; Wagenmakers, Griinwald, & Steyvers,
2006) is to assess a model’s worth by the adequacy of its predic-
tions. Assume that data points come in one by one and that every
time, the model’s goal is to make the best prediction for the very
next data point. In contrast to leave-one-out cross-validation, the
calibration set grows as the data accumulate. Thus, one-step-ahead
model predictions are relatively poor at first, but they improve as
the calibration set grows in size. We then sum all the prediction
errors and prefer the model that has the smallest summed one-
step-ahead prediction error.

When prediction error is measured by logarithmic loss, APE is
identical to BF model selection. When prediction error is measured
with quadratic loss, APE only approximates BF model selection
though. In addition, APE implements the principle of predictive
minimum description length (Rissanen, 1986a). Hence, APE is an
attractive method for model selection, with firm theoretical under-
pinnings. One drawback of APE is that with quadratic loss, the end
results are not available as probabilities or odds, and this hinders
the interpretation of the results. In addition, with quadratic loss, the
results depend on the order in which the data arrive—a generally
undesirable property (Wagenmakers et al., 2006). Although there
is often a natural ordering to experimental data (e.g., Participant 1

9 The online supplemental material provides a more systematic outline
of this comparison.
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is tested prior to Participant 2, and Trial 1 is completed before Trial
2), this ordering is often considered inconsequential, as the data for
different participants or trials are assumed to be interchangeable.
To obtain an order-independent answer, one can calculate the final
APE as an average of APEs for many random orderings of the
same data set (Kontkanen, Myllymaki, & Tirri, 2001; Rissanen,
1986a). The drawback of this procedure is that it greatly increases
the computational burden. Finally, a thorough comparison of APE
and the BF has yet to be performed.

Minimum description length. Another approach is to penal-
ize model complexity using the principle of minimum description
length (MDL; e.g., Griinwald, 2000, 2007; Griinwald, Myung, &
Pitt, 2005; Rissanen, 1987, 2007). The principle can be instantiated
in different ways, but in general, MDL methods seek to quantify
the extent to which a model can be used to extract regularities from
the data in order to minimize the amount of information required
for the data’s description. The model that achieves the greatest
compression of the data is preferred. BFs and MDLs are derived
from very different theoretical frameworks, but they nevertheless
tend to yield the same conclusion. Consider, for instance, the
differential geometry version of the MDL (e.g., Pitt et al., 2002),
which is given by

MDL = flnLJrl—C X ln<i> +V.
2 2m

This equation is effectively the same as the BIC, except for the
additional term V. This term quantifies model complexity in terms
of the number of different predictions that the model can make.
The term V is defined as = In [d8"\/det[1(8)], where 0 indicates
the parameter space and /(0) is the Fisher information matrix
(Rissanen, 1996). Inclusion of V allows the MDL to account for
functional form complexity, something that the BIC cannot. The
BF approach used in this article can account for functional form
complexity, just as the MDL does. Furthermore, Balasubramanian
(1997) showed that the differential geometry version of the MDL
can be recast as a finite-series approximation of the BF model
selection using Jeffreys’s (1961) prior.

In sum, MDL and BF model selections are closely related in
terms of their inferences. We prefer BF model selection over MDL
mainly for two reasons. First, in practice, it is much more difficult
to apply the MDL than it is to apply BF model selection, a
difference that is partly due to the availability of MCMC and partly
due to the BF model selection having always been the more
popular method of the two. Second, the Bayesian framework deals
with uncertainty in parameters (for fixed data), whereas some
versions of the MDL deal primarily with uncertainty across the
sample space, considering data that may have been obtained but
were not (Wallace & Dowe, 1999). More generally, the Bayesian
inference machine provides a coherent account of model selection.

Rigorously Testing the Toolbox Approach

Although the Bayesian approach yields coherent and intuitive
results, its successful implementation comes with a series of re-
quirements. One is that each toolbox must be precisely defined in
mathematical terms. This includes a specification of how strategies
within the toolbox are selected. When the selection process is not
defined in detail, a pragmatic solution is to estimate the selection

probability from the observed data. We applied this generic way of
specifying the selection process in our simulation study and out-
lined how it can be fruitfully used to analyze various empirical
data. However, researchers sometimes have specific theories on
how strategies are selected (Gigerenzer & Brighton, 2009; Lovett,
1988; Marewski & Schooler, 2011; Siegler & Shipley, 1995). For
example, in the above cases of function learning and categoriza-
tion, a clear-cut theory existed on which specific tool was selected
depending on the context. Toward the goal of advancing toolbox
theories in psychology, further theory building on how the strategy
selection problem can be solved is an important area for future
research (Marewski & Schooler, 2011; Rieskamp & Otto, 2006). A
more detailed understanding of the conditions that influence which
strategy will be selected could provide the basis for more rigorous
theoretical tests.

In other cases, models may have additional free parameters that
must be estimated from data, such as the weights or the rank order
of cues in judgments and decision making (Bergert & Nosofsky,
2007; Lee & Newell, 2011). However, regardless of the detailed
model implementation and selection processes, the same Bayesian
model comparison techniques suggested here could be applied
without loss of generality.

Once the available tools and the selection processes are properly
specified, the outlined Bayesian approach can also be used to test
toolbox models against qualitatively different psychological theo-
ries. In areas where toolbox models are proposed, there are often
alternative theories with qualitatively different theoretical assump-
tions. In these cases, an important empirical question is which
model can best explain the underlying cognitive processes. The
Bayesian approach outlined here allows researchers to rigorously
address this question.

Additional Model Selection Criteria

Testing different theories against each other by means of quan-
titative (Bayesian) techniques does not replace essential qualitative
tests of theories, though. This includes an evaluation of the plau-
sibility of the theories’ underlying theoretical assumptions, the
overall exploratory power and descriptive adequacy, the theoreti-
cal justification of and consistency with previous knowledge of the
underlying mental processes, and also the interpretability and
usefulness of the model predictions (Myung & Pitt, 1997; Pitt et
al., 2002). These qualitative model comparison criteria are impor-
tant for avoiding the selection of theoretically implausible models
just because they predict data better than even more miserable
models (Kass & Raftery, 1995). Here, posterior predictive checks
such as those outlined above become important as they allow one
to estimate the absolute goodness of fit. Likewise, different models
often lead to qualitatively different predictions that should be
tested.

Conclusion

In summary, the above examples show how the theoretical
framework of cognitive toolboxes can be traced across various,
seemingly unrelated lines of research in psychology. Although the
framework has many virtues, it requires persuasive model com-
parison techniques that allow rigorous testing of the toolbox ap-
proach. The outlined Bayesian techniques provide a coherent and
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widely applicable method for analyzing this class of models. Once
applied, the obtained results can be easily communicated and
interpreted, and they provide multivariate posterior distributions of
the estimated model parameters (and not just point estimates). The
approach further provides the opportunity to make prior assump-
tions explicit and to integrate prior knowledge. Thus, we can draw
fine-grained conclusions that can enhance the development of
toolbox models across many fields in psychology. As there are
many ways to Rome, it is important to understand which roads are
traveled more and which ones less.
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Appendix A

Model Implementation for the Categorization Data by Yang and Lewandowsky (2004)

The two continuous, arbitrarily scaled dimensions x and y of the
40 novel transfer items in the experiment by Yang and Le-
wandowsky (2004) were normalized. Next, all items below the
diagonal (i.e., y < x — 0.5) were mirrored along the identity vector
y = x. This way, items above the hypothetical boundary vector f(x) =
x + 0.93 belonged to Category A, and items below belonged to
Category B. In this transformed stimulus space, the true parallel
boundaries rule (i.e., the all-purpose model) was formalized as a
single boundary vector with unity slope §; = a + x;, where ¥ is the
prediction for each item i and the intercept « is a free parameter of the
model that determines where individuals set the boundary.

The probability of a correct classification was modeled based
on an exponential choice function (i.e., Luce’s choice rule),

A= —7
PAY = T8,

where p(A); is the probability of predicting Category A, 0 is a
free parameter indicating the degree of error when applying the
boundary rule, and d, is the difference between the true and the
predicted +y value, calculated as d; = vy; — ¥,.The model is
estimated by comparing p(A) against participants’ actual an-
swers. The alternative, context-dependent categorization model
was similar except that all items within one of the two catego-
ries were mirrored along the diagonal.

Appendix B

Conceptualization of the Exemplar Model

The exemplar model proposed by Juslin, Jones, Olsson, and
Winman (2003) predicts people’s choices based on the assumption
that a person choosing between two options retrieves similar
choice situations from memory. In particular, a pair of options
(exemplars) is retrieved where each option is described by a vector
of cue values that can be positive (i.e., +), negative (i.e., —), or
unknown (i.e., 7). The retrieved exemplars can be described by a
so-called cue configuration. For each cue in a configuration, nine
combinations of cue values are possible (i.e., +/+, +/—, +/72,
—/+, etc.). When making inferences, the cue configuration of the
current pair (probe) is compared to the configuration of all previ-
ous pairs (exemplars) by determining the similarity between the
configurations, defined as s(x,y) = IT7_ 1dyym> Where d,,,, takes a
value of 1 if the combination of cue values of the probe x corre-
sponds with the combination of cue values of the exemplar y for
cue m; otherwise, it takes the value s,,, which is an attention weight
parameter varying between 0 and 1 (cf. Juslin, Jones, et al., 2003).

The attention weights represent the cues’ subjective importance;
the smaller the value, the greater the importance. For simplicity,
we assumed that the attention weights are identical for all cues (see
Persson & Rieskamp, 2009; von Helversen & Rieskamp, 2008).
Finally, the probability that the first option A from the option pair
A and B will be chosen is determined by

E jeA s (x,y j)
jea s ) + Xep s06 )
where the index j € A denotes that the sum is reached over all
exemplars y; where Option A was the correct choice, whereas the

index j € B denotes that the sum is reached over all exemplars y;
where Option B was the correct choice.

pA) =
>
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